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Introduction
Researchers studying decadal variability over the 
instrumental period are often confronted with two 
major obstacles. First, the observational record is short 
compared to the timescales of interest, sampling at best 
only a few realizations of decadal-scale phenomena 
(Meehl et al., 2009). Second, most climate variables 
include long-term trends driven by human activity (e.g., 
land use change, aerosol pollution, and of course the 
impact of greenhouse gas emissions), which sometimes 
mask decadal variability from natural causes. The 
climate research community therefore often turns to 
both paleoclimate archives of past changes, as well as 
multi-century integrations of general circulation models 
(GCMs). Both types of data can provide insights into 
the amplitudes, patterns, and plausible mechanisms of 
internal decadal variability, which could ultimately help 
inform and evaluate predictions of near-term climate 
evolution. In principle, proxy and GCM data should yield a 
consistent view of the climate system on these timescales. 
In practice, current paleoclimate data-model comparisons 
of decadal variability must contend with at least one 
of the challenges delineated below. To address these 
concerns, I submit several heuristic recommendations 
to help to identify fundamental similarities—and critical 
differences—between paleoclimate and climate model 
perspectives on decadal variability of the last millennium.

(i) Paleoclimate archives filter climate variability in 
ways that are difficult to quantify.
Most paleoclimate archives “redden” climate information 
by storing information from one time period to the 
next (e.g., Matalas, 1962; Evans et al., 2013; Ault 2013; 
Dee et al., 2015). This reddening, in turn, has the effect 
of amplifying decadal fluctuations in proxy records 
relative to their climatic drivers. Consequently, the mere 
presence of high amplitude decadal variability in a given 
paleoclimate time series cannot be taken as evidence 
of correspondingly energetic climatic variability (the 
details of this effect are considered extensively in Ault et 
al., 2013 and also Dee et al., in revision).

In addition to reddening the spectrum of underlying 
climate variables, many paleoclimate archives 
preferentially record information from certain seasons. 
For example, St. George et al. (2010) showed that tree-
ring reconstructions of North American PDSI (Cook et al., 

2004) exhibit variable seasonal sensitivity to temperature 
and precipitation depending on the region. In the US 
Southwest, for example, the PDSI is highly sensitive 
to winter moisture, while in the Pacific Northwest, it 
depends more strongly on summer temperature. These 
seasonal dependencies reflect, in part, the dependence 
of tree growth on different environmental factors during 
the seasonal cycle (St George and Ault, 2014), a finding 
consistent with basic dendroclimatological theory 
(Fritts, 1976). On interannual timescales, diagnosing 
the filtering effects of tree growth on climate input is 
relatively straightforward because data are annually 
resolved and overlap with the instrumental period. 
However, this problem has not been widely studied on 
decadal time horizons, and it remains a possibility that 
trees grow in response to different climate factors across 
timescales (e.g., Franke et al., 2013).

(ii) Forward models of paleoclimate archives might 
be biased by spatial and temporal patterns in GCMs. 
Given the tendency for proxies to redden and filter 
climate information, one might be tempted to simply 
run GCM output through “forward models” of various 
proxy systems and compare the resulting output with 
actual archives. Caution would be recommended for 
such an approach because models themselves exhibit 
systematic geographic and frequency biases.  Consider 
a case in which a forward model of tree-ring growth is 
run to predict annual ring-width anomalies as a function 
of monthly temperature and precipitation (e.g. the 
“Vaganov-Shashkin-Lite" model of Tolwinski-Ward et 
al., 2011; VS-Lite). If this model were to be run with raw 
output from a GCM with a wet bias (as is common for the 
American Southwest), VS-Lite would produce simulations 
where tree growth is never limited by the availability 
of soil moisture, even during the “driest” year. Similar 
considerations apply to other types of proxy systems, 
and although standard bias-correction techniques are 
available for removing systematic model errors (e.g. 
Maurer et al., 2007), these tools have not been widely 
adopted for paleoclimate model-data comparisons. 

(iii) Climate teleconnections are not necessarily 
stable through time. There are inherent biases in the 
structure of GCM teleconnections linking remote climate 
variations (e.g., in the Pacific basin) to the locations
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where there are paleoclimate records (e.g., the American 
Southwest). For example, Coats et al. (2013) found that El 
Niño/Southern Oscillation teleconnections in GCMs: (a) 
are not well simulated by some models in the American 
Southwest, and (b) are not always stable in all models 
from one century to the next. These considerations extent 
to decadal timescales and observations data; Newman et 
al., (2016) argued that the spatial pattern of the Pacific 
Decadal Oscillation (PDO) during the 20th Century might 
not be representative of decadal variability in that basin 
over the last millennium, and hence the teleconnections 
driven by this climate mode may have been different 
in the past. Consequently, both GCMs and proxies may 
be susceptible to aliasing by changes in the large-scale 
structure of processes that generate decadal variability.

Suggestions to improve our understanding of decadal 
variability in proxies and models. 
The list of considerations above implies at least four 
key principles should be followed when attempting to 
characterize decadal variability in a given system or 
region using paleoclimate data and climate model output. 
These include:
1.	 Comparisons are likely to be most meaningful if 

reconstructed phenomena are compared with 
model phenomena (e.g., Fig. 1), as opposed to local 
or regional variations. Reconstructions of large-
scale climate modes tend to rely on networks of 
paleoclimate archives, often from different proxy 
types (e.g., Emile-Geay et al., 2013). Accordingly, such 
networks can minimize the effects of proxy filtering 
as well as differences in spatial scales between model 
grids and individual sites. Moreover, if teleconnection 
patterns change through time, a large-scale network 
of sites will be better suited to “see” the same 
phenomena even if its spatial imprint varies.

2.	 Decadal variability inferred from both paleoclimate 
and GCM sources should be evaluated against an 
appropriately defined null hypothesis. In a simple, 
univariate setting, such a null hypothesis is usually 
the spectrum generated by an AR(1) processes. For 
more complicated systems, or for multivariate cases, 
a more sophisticated method for generating the null 
distribution might be needed. 

3.	 Methodologies for comparing decadal variability 
in proxies and climate models should employ time 
series analysis and spectral techniques alike. While 
the former can help isolate the role of external 
forcings if the temporal evolution of those forcings 
is known, the latter can identify timescales at which 
models and proxies exhibit fundamentally different 
amplitudes of variability. 

4.	 Finally, researchers should consider using forward 
models of paleoclimate archives to characterize 
the imprint of proxy systems on the continuum of 
variability encoded in existing records (e.g., Dee et 
al., 2015; Dee et al., in revision). Such analyses will 

help isolate climate, as opposed to non-climate, 
sources of decadal variability.

An example of how a few of these principles can be 
applied is shown in Fig. 1 (adapted from Ault et al., 2013). 
Here NINO3.4 spectra from reconstructions  (Emile-Geay 
et al., 2013) and last millennium model output (Otto-
Bliesner et al., 2016) are compared against the null 
distribution of ENSO variations with no changes to the 
external boundary conditions (as in Ault et al., 2013). 
Here a linear inverse model (LIM) has been used to 
generate the null distribution (see Ault et al., 2013 and 
Newman et al., 2011 for details). At the longest resolvable 
timescales (centuries), the null hypothesis can be rejected 
for the reconstructions, but not for the model runs. At 
higher (interannual) frequencies, the reconstructions 
are well within the null distribution, whereas the model 
oscillations are not (because this version of the model 
produces ENSO fluctuations that are too high amplitude 
in comparison to observations). 

While the null hypothesis can be rejected for the 
centennial timescales in the reconstruction, and the 
interannual ones in the model, it cannot be rejected for 
the amplitudes of multidecadal (50-100 year) variations 
in either data type. This approach could help identify the 
timescales that require the greatest attention by both 
paleoclimate and climate modeling research communities 
to understand the processes responsible for generating 
low-frequency variability.
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Figure 1: Power spectra of NINO3.4 time series derived 
from a LIM (black lines with gray shading), multi-proxy 
paleoclimate reconstructions (green; Emile-Geay et al., 
2013), and the CESM Last Millennium Ensemble inner 
quartile range (IQR) (red; Otto-Bliesner et al., 2016). The 
vertical dashed line marks the middle of the 2-7 year 
peak typically associated with ENSO in observations
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